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An exact model for a relativistic "gaseous" sphere (i.e., one whose density p 
vanishes at the outer boundary of the nonstatic sphere together with the pressure 
p) is given. The model has a bounce: The collapsing sphere comes momentarily 
to rest when the boundary is still outside the Schwarzschild radius of the matter 
sphere, then there is a macroscopic bounce, and the matter of the expanding 
sphere spreads all over the universe. This bouncing solution of Einstein's field 
equations is physically valid at any moment, i.e., the pressure and the density 
are positive inside the fluid sphere, and their respective gradients are negative. 
The mass function is positive, and the circumference is an increasing function 
of radial coordinate. This solution may represent at easily surveyable model 
for a supernova explosion where the explosion is so violent that no remnant 
whatsoever is left. 

1. I N T R O D U C T I O N  

The ques t ion of  the final, relativistic stage in the evolut ion a star is 
now of great interest. The supernova  that went  off in the Large Magel lan ic  

Cloud  gives us a un ique  oppor tun i ty  to follow a relativistic p h e n o m e n o n  
in great detail.  Since we cannot  claim to have reliable knowledge of the 
extreme physical  condi t ions  unde r  which matter  exists at the bounce  of a 
supernova  explosion,  it is the purpose  of this paper  to give a simple exact 
model  that  may represent  such an explosion without  having to specify which 
equa t ion  of state the matter  obeys. 

The progeni tor  of the supernova  SN 1987A is almost  certainly the B 
supergiant  Sanduleak-69202. This was certainly a gaseous sphere, and  
accordingly we construct  a nonsta t ic  model  where both  the matter  densi ty  
and  the pressure drop to zero at the surface of  the sphere. 
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To have a realistic model for stellar collapse and supernova explosions 
one has, of  course, to use numerical calculations. But workers in this field 
consider two different mechanisms for expelling the star's outer layers: 

1. The gravitational energy is released in the form of neutrinos, and 
these neutrinos transfer momentum to the outer layers and blow them off. 

2. The core becomes extremely stiff when the neutrons become degener- 
ate. The outer layers collapse onto this core, and there is a macroscopic 
bounce of these layers. 

We try to keep as close to reality as possible, and we thus choose our 
model in such a way that the gaseous sphere bounces when its outer 
boundary is still outside its Schwarzschild radius, and such that its surface 
area reaches a minimum at this moment.  

However, the procedure we follow to obtain our simple, exact model 
starts with a preassigned form of the spherically symmetric line element 
(McVittie metric) and requires the distribution of  material to be a perfect 
fluid. Einstein's field equations are then used "in reverse" to obtain the 
pressure p and the density p. But it should be emphasized that this method 
yields unphysical pressure-density configurations more frequently than 
physical ones. The model must therefore be carefully checked to see if it 
is of  physical relevance. The pressure and the density should then be positive 
inside the boundary of  the sphere and s h o u l d b e  decreasing outward. We 
show that for our model the pressure and the density have the desired 
behavior. Moreover, the mass function is positive, and the circumference 
is an increasing function of  radial coordinate. The model has no singularity, 
and the contraction period is finite. 

The model constructed in this paper  rests heavily on the results obtained 
in a previous paper  (Knutsen, 1985), and to save space I shall not outline 
those results in detail, but assume that the reader is rather familiar with 
that paper. 

2. THE GENERALIZED McVITTIE METRIC 

We choose the line element in the following way: 

ds 2 = y2 dt  2 _  S 2 e~[ dr2 + f2 (  d02 + sin 2 0 dp2) ] (1) 

The scale function S is here a function of  t alone, and f is a function of 
the comoving radial coordinate r alone. Further, y and ~7 are functions of  
a variable z defined by 

e ~ = Q / S  '~ (2) 

where Q is another function of r and n is a constant. The McV metric 
(McVittie, 1967) is the special case where the constant n is put equal to unity, 
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v For a perfect fluid we now obtain from T 4 = 0 (T~, denotes the energy- 
momentum tensor) 

y = 1-�89 dTl/dz (3) 

The isotropy condition breaks up into the following three differential 
equations, which may be solved independently (Nariai, 1968): 

O" O'f' [O, 2 Q ~ - f  -~ a ~--~) (4) 

f '  f'2 l=b{Q '~2  
f f2 f2 \Q/  (5) 

where a prime means differentiation with respect to r, and a and b are 
arbitrary constants. 

We thus have four differential equations to find the four unknown 
functions y, 7, f, Q. The scale function S is found by fitting the internal 
solution to an external vacuum Schwarzschild solution, i.e., the pressure 
must be put equal to zero at the boundary. 

The general expressions for the density and the pressure have been 
given in a previous paper (Knutsen, 1983), and there it was also shown that 
the junction condition at the boundary yields an ordinary differential 
equation of first order for $2 (the dot denotes differentiation with respect 
to t). When that differential equation is solved, it will thus contain an 
arbitrary integration constant. However, if we in addition demand the fluid 
to be gaseous, i.e., we demand the density to vanish at the boundary, that 
integration constant is in fact specified. The reason for this is that conserva- 
tion of energy, i.e., 

T,~;, = 0 (7) 

[a semicolon denotes  covariant differentiation, and for the McV metric 
equation (7) reads/5 = -3y(S/S)(p +p)]  yields that for a nonstatic gaseous 
sphere the pressure must also drop to zero at the boundary. 

The pressure gradient is found from the law of conservation of linear 
momentum, i.e., 

vT;. = o (8) 

and for the McV metric it reads 

p,= _ Q___~' dy(p +p) (9) 
yQ dz 
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We have previously (Knutsen, 1983) worked out the expression for the 
density gradient, and we have also given a simple proof  (Knutsen, 1987) 
which yields the necessary and sufficient conditions for the pressure to be 
well-behaved for gaseous spheres with negative density gradient. For the 
generalized McV metric this means that we must prove that p ' < 0  and 
(Q'/yQ) dy/dz > 0 to have a gaseous model with negative pressure gradient 
and thus positive pressure. 

3. THE BOUNCING M O D E L  

We now choose a = l + 2 / n  and b = 0 ,  i.e., we follow Section 6.1 in 
our previous work (Knutsen, 1985). We thus have 

f =  sinh r (10) 

where a and/3 are constants, and 

Q-2/~ = 1  cosh r +  1 - /3  (11) 
ot 

S - Z  
y - (12) 

S + Z  

where 

and k is a positive constant. 
Further, we have 

Z = k Q  1/~ (13) 

e -~ = e~S4/(S+ Z)  4 (14) 

where e is an arbitrary integration constant. The differential equation for 
the scale function S now reads 

S 4 
s 2 =  e ~ _ ( 1 5 )  ( S + k ) , ( S  SB) 

where 

This equation gives the qualitative time development, and we also have a 
consistency condition which must be fulfilled, i.e., we must have ,~2_> 0. 
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4. R E G U L A R I T Y  

In our previous work it was found that to have a negative density 
gradient it was necessary and sufficient that the constants a and fl be chosen 
in the following way: 

1 1 
~ > 0 ,  - - < f l < l + - -  (17) 

OL O/ 

Since y must be positive, we also demend 

S >  Z m a  x = k(1 + 1/~ _fl)-1/2 (18) 

From equation (11) we now obtain 

Q'/n < 0 (19) 

and we also have 

dy 2 s z  
m 

dz n ( S + Z )  2 

Thus, it must be the case that 

(20) 

Q' dy> 0 (21) 
yQ dz 

and according to our previous statement we can now safely conclude that 
the pressure and the density and their respective gradients are all well-behaved. 
It should be noted that this statement is valid at any moment, and we do 
not have to restrict its validity to a certain time interval as we did in our 
previous work (Knutsen, 1985). From that work we also conclude that the 
mass function m is positive, and the "physical" radius R =fSe  hI2 is an 
increasing function of radial coordinate. It is also immediately seen that 
the mass function m and the "physical" radius R are well-behaved at the 
origin, i.e., they both drop to zero at the center of the gaseous sphere. 

As stated by Misner and Sharp (1964), we must also have Lorentz- 
Minkowski geometry at the origin, and this condition now reads 

,Q,f] f'+(1-y)~-Qj=l for r=O  (22) 

From equation (10) it is seen that this is fulfilled. It is also easily 
checked that p, p', p, and p'  are all finite at the origin. To have a bouncing 
solution we must also demand 

SB > Zm~x (23) 

and from equations (16) and (18) it is seen that this condition may be written: 

(1 + 1 /a  - fl)-3/2 _< 1 /a  + fl - 1 (24) 
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It  must  also be  the case that  the bounda ry  is still outside the Schwarzschi ld  
radius of  the gaseous sphere  at the m o m e n t  of  the bounce,  i.e., 

Rboundary( SB) > 2mboundary (25) 

A little calculat ion then shows that  this condi t ion  reads 

{1 - [ ( 1 - / 3 ) 2 -  1/a2]}2a2 > ( a2 /32-  1 ) 2 [ 1 / a 2 -  (1 - /3)2]  (26) 

It  is now trivial to check that  all our  condi t ions (17), (24), and (26) are 
fulfilled if  we choose,  for  example ,  (a , /3 )  = (1/2,  5/2)  or (a , /3 )  = (1/4,  9/2) .  

F rom equat ion  (15) we also find that  we have 

ee/2 fboundary( S B -- k )S 2 
/~b~ ~--- 2(SB -[- k)  4 > 0 (27) 

Hence,  we can safely conclude that  our  mode l  represents  a truly bounc ing  
sphere  and  not  an asymptot ica l ly  contract ing fluid sphere.  This is also 
conf i rmed if we calculate the length T of  the contract ion per iod.  Using 
equa t ion  (15), we find 

f s  :B dS T = e -~/2 ( S +  k) 5/2 (28) 
....... 52(5  - SB)I/2 

and it is seen that  T is finite. 

5. C O N C L U S I O N  

I have given an exact  mode l  for  a relativistic gaseous sphere.  The  mot ion  
starts with the mat ter  a l ready in mot ion,  and  contracts  to a state of  rest 
when  its b o u n d a r y  is still outside its Schwarzschi ld  radius. The  sphere  then 
starts expand ing  and its mat te r  is spread  all over  the universe.  The sphere  
is also regular  everywhere  at any moment .  I pu t  this solut ion forward  with 
the tentat ive p re sumpt ion  that  it is the first mode l  o f  this kind. 
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